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As originally formulated, the Generalized Alignment Index (GALI) method of chaos detection
has so far been applied to distinguish quasiperiodic from chaotic motion in conservative nonlinear
dynamical systems. In this paper, we extend its realm of applicability by using it to investigate
the local dynamics of periodic orbits. We show theoretically and verify numerically that for stable
periodic orbits, the GALIs tend to zero following particular power laws for Hamiltonian flows,
while they fluctuate around nonzero values for symplectic maps. By comparison, the GALIs of
unstable periodic orbits tend exponentially to zero, both for flows and maps. We also apply the
GALIs for investigating the dynamics in the neighborhood of periodic orbits, and show that for
chaotic solutions influenced by the homoclinic tangle of unstable periodic orbits, the GALIs can
exhibit a remarkable oscillatory behavior during which their amplitudes change by many orders
of magnitude. Finally, we use the GALI method to elucidate further the connection between
the dynamics of Hamiltonian flows and symplectic maps. In particular, we show that, using the
components of deviation vectors orthogonal to the direction of motion for the computation of
GALIs, the indices of stable periodic orbits behave for flows as they do for maps.
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1. Introduction

The method of the Generalized Alignment Indices
(GALIs) was originally introduced in [Skokos et al.,
2007] as an efficient chaos detection method. To
date, the GALI method has been successfully
applied to a wide variety of conservative dynami-
cal systems for the discrimination between regular
and chaotic motion, as well as for the detection of
regular motion on low dimensional tori [Antonopou-
los & Bountis, 2006; Christodoulidi & Bountis,
2006; Skokos et al., 2008; Manos et al., 2008a,
2009; Bountis et al., 2009; Skokos & Gerlach, 2010;
Manos & Ruffo, 2011; Manos & Athanassoula, 2011;
Gerlach et al., 2012].

In the present paper, we extend and com-
plete the study of the GALI method, focusing on
its behavior for the special case of periodic orbits
and their neighborhood in conservative dynami-
cal systems. The detection of periodic orbits and
the determination of their stability are fundamen-
tal approaches for the study of nonlinear dynami-
cal systems, since they provide valuable information
for the structure of their phase space. In particu-
lar, stable periodic orbits are associated with reg-
ular motion, since they are surrounded by tori of
quasiperiodic motion, while in the vicinity of unsta-
ble periodic orbits chaotic motion occurs.

The GALI method is related to the evolution
of several deviation vectors from the studied orbit,
and therefore is influenced by the characteristics of
the system’s tangent space. The main goal of the
paper is to determine the usefulness of the method
for probing the local dynamics of periodic orbits
with different stability types. We manage to achieve
this goal by deriving theoretical predictions for the
behavior of GALIs for stable and unstable peri-
odic orbits. We also verify numerically the validity
of these predictions, by studying the evolution of
GALIs for periodic orbits of several Hamiltonian
flows and symplectic maps, clarifying also the con-
nections of such dynamical systems. In addition, we
show how the properties of the index can be used
to locate stable periodic orbits, and to understand
the dynamics in the vicinity of unstable ones.

The paper is organized as follows: in the first
two introductory sections, we recall the definition
of the GALI, describing also its behavior for regular
and chaotic orbits (Sec. 2), and report the several
stability types of periodic orbits in conservative sys-
tems (Sec. 3). In Sec. 4, we first study theoretically

the behavior of the index for stable and unstable
orbits, and then present applications of the GALI
to particular orbits of Hamiltonian flows and sym-
plectic maps. Section 5 is devoted to the dynamics
in the neighborhood of periodic orbits, while Sec. 6
is dedicated to the relation between the GALIs of
stable periodic orbits for flows and maps. Finally,
in Sec. 7, we summarize our results.

2. The Generalized Alignment
Index (GALI)

Let us briefly recall the definition of the GALIs
and their behavior for regular and chaotic motion
in conservative dynamical systems. Consider an
autonomous Hamiltonian system of N degrees of
freedom (Ndof), described by the Hamiltonian
H(q1, q2, . . . , qN , p1, p2, . . . , pN ), where qi and pi,
i = 1, 2, . . . , N are the generalized coordinates and
conjugate momenta, respectively. An orbit in the
2N -dimensional phase space S of this system is
defined by a vector x(t) = (q1(t), q2(t), . . . , qN (t),
p1(t), p2(t), . . . , pN (t)), with xi = qi, xi+N = pi,
i = 1, 2, . . . , N . The time evolution of this orbit is
governed by Hamilton’s equations of motion

dx
dt

= V(x) =
(

∂H

∂p
,−∂H

∂q

)
, (1)

while the time evolution of an initial deviation vec-
tor w(0) = (dx1(0), . . . , dx2N (0)) from the x(t)
solution of Eq. (1), obeys the variational equations

dw
dt

= M(x(t)) ·w, (2)

where M = ∂V/∂x is the Jacobian matrix of V.
Let us also consider a discrete time t = n ∈ N

conservative dynamical system defined by a 2N -
dimensional (2ND) symplectic map F . The evolu-
tion of an orbit in the 2N -dimensional space S of
the map is governed by the difference equation

x(n + 1) ≡ xn+1 = F (xn). (3)

In this case, the evolution of a deviation vector
w(n) ≡ wn, with respect to a reference orbit xn,
is given by the corresponding tangent map

w(n + 1) ≡ wn+1 =
∂F

∂x
(xn) · wn. (4)
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For Ndof Hamiltonian flows and 2ND maps the
Generalized Alignment Index of order k (GALIk),
2 ≤ k ≤ 2N , is determined through the evolution
of k initially linearly independent deviation vectors
wk(0). To avoid overflow problems, the resulting
deviation vectors wk(t) are continually normalized,
but their directions are kept intact. Then, accord-
ing to [Skokos et al., 2007] GALIk is defined as the
volume of the k-parallelogram having as edges k
unit deviation vectors ŵi(t) = wi(t)/‖wi(t)‖, i = 1,
2, . . . , k, determined through the wedge product of
these vectors as

GALIk(t) = ‖ŵ1(t) ∧ ŵ2(t) ∧ · · · ∧ ŵk(t)‖, (5)

with ‖ · ‖ denoting the usual norm. From this defi-
nition it is evident that if at least two of the devia-
tion vectors become linearly dependent, the wedge
product in Eq. (5) becomes zero and the GALIk
vanishes.

In the 2N -dimensional phase space S of an
Ndof Hamiltonian flow or a 2ND map, regular
orbits lie on s-dimensional tori, with 2 ≤ s ≤ N for
Hamiltonian flows, and 1 ≤ s ≤ N for maps. For
such orbits, all deviation vectors tend to fall on the
s-dimensional tangent space of the torus on which
the motion lies. Thus, if we start with k ≤ s general
deviation vectors, these will remain linearly inde-
pendent on the s-dimensional tangent space of the
torus, since there is no particular reason for them
to become linearly dependent. As a consequence
GALIk remains practically constant and different
from zero for k ≤ s. On the other hand, GALIk
tends to zero for k > s, since some deviation vec-
tors will eventually have to become linearly depen-
dent. In particular, the generic behavior of GALIk
for regular orbits lying on s-dimensional tori is given
by [Christodoulidi & Bountis, 2006; Skokos et al.,
2008]

GALIk(t) ∝




constant if 2 ≤ k ≤ s

1
tk−s

if s < k ≤ 2N − s

1
t2(k−N)

if 2N − s < k ≤ 2N.

(6)

Note that these estimations are valid only when the
conditions stated above are exactly satisfied. For
example, in the case of 2D maps, where the only
possible torus is a one-dimensional (s = 1) invariant

curve, the tangent space is one-dimensional. Thus,
the behavior of GALI2 (which is the only possi-
ble index in this case) is given by the third branch
of Eq. (6), i.e. GALI2 ∝ 1/t2, since the first two
cases of Eq. (6) are not applicable. From Eq. (6)
we deduce that, for the usual case of regular orbits
lying on an N -dimensional torus, the behavior of
GALIk is given by

GALIk(t) ∝




constant if 2 ≤ k ≤ N

1
t2(k−N)

if N < k ≤ 2N.
(7)

On the other hand, for a chaotic orbit all
deviation vectors tend to become linearly depen-
dent, aligning themselves in the direction defined
by the maximum Lyapunov characteristic exponent
(mLCE) and hence, in that case, GALIk tends to
zero exponentially following the law [Skokos et al.,
2007]

GALIk(t) ∝ e−[(σ1−σ2)+(σ1−σ3)+···+(σ1−σk)]t, (8)

where σ1, . . . , σk are the first k largest Lyapunov
characteristic exponents (LCEs) of the orbit.

The GALI is a generalization of a similar indi-
cator called the Smaller Alignment Index (SALI)
[Skokos, 2001b; Skokos et al., 2003, 2004], which
has been used successfully for the detection of chaos
in several dynamical systems [Széll et al., 2004;
Panagopoulos et al., 2004; Bountis & Skokos, 2006;
Capuzzo-Dolcetta et al., 2007; Manos et al., 2008b;
Macek et al., 2007; Stránský et al., 2009; Macek
et al., 2010]. The generalization consists of the fact
that the GALIs use information of more than two
deviation vectors from the reference orbit, leading
to a faster and clearer distinction between regular
and chaotic motion compared with SALI. In prac-
tice, SALI is equivalent to GALI2 since GALI2 ∝
SALI (see Appendix B of [Skokos et al., 2007] for
more details).

For the numerical computation of GALIs we
consider the k × 2N matrix W(t) having as rows
the coordinates wij(t) of the unit deviation vectors
ŵi(t), i = 1, 2, . . . , k, j = 1, 2, . . . , 2N , with respect
to the usual orthonormal basis ê1 = (1, 0, 0, . . . , 0),
ê2 = (0, 1, 0, . . . , 0), . . . , ê2N = (0, 0, 0, . . . , 1) of the
2N -dimensional tangent space S. Thus, GALIk(t)
can be evaluated as the square root of the sum of
the squares of the determinants of all possible k×k
submatrices of W [Skokos et al., 2007]
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GALIk =




∑
1≤i1<i2<···<ik≤2N

∣∣∣∣∣∣∣∣∣

w1i1 w1i2 · · · w1ik
w2i1 w2i2 · · · w2ik

...
...

...
wki1 wki2 · · · wkik

∣∣∣∣∣∣∣∣∣

2


1/2

. (9)

Here the sum is performed over all possible com-
binations of k indices out of 2N , | · | denotes the
determinant, and the explicit dependence of all
quantities on time t is omitted for simplicity.

Equation (9) is ideal for the theoretical deter-
mination of the asymptotic behavior of GALIs for
chaotic and regular orbits. It has been used in
[Christodoulidi & Bountis, 2006; Skokos et al., 2007,
2008] for the derivation of Eqs. (6) and (8), and will
be applied later on in Sec. 4.1 for the determination
of GALIs’ behavior for periodic orbits. However,
from a practical point of view the application of
Eq. (9) for the numerical evaluation of GALIk is not
very efficient as it might require the computation of
a large number of determinants. In [Antonopoulos &
Bountis, 2006; Skokos et al., 2008], a more efficient
numerical technique for the computation of GALIk,
which is based on the Singular Value Decomposition
of matrix W(t) was presented. In particular, it has
been shown that GALIk is equal to the product of
the singular values zi ≥ 0, i = 1, 2, . . . , k of WT(t)

GALIk(t) =
k∏

i=1

zi(t), (10)

where (T) denotes the transpose matrix.

3. Stability of Periodic Orbits

Now, consider a T -periodic orbit (i.e. an orbit sat-
isfying x(t + T ) = x(t)) of an Ndof Hamiltonian
flow or of a 2ND symplectic map. Its linear stabil-
ity is determined by the eigenvalues of the so-called
monodromy matrix Y(T ), which is obtained from
the solution of the variational equations for one
period T (see for example [Broucke, 1969; Lichten-
berg & Lieberman, 1992, Sec. 3.3; Skokos, 2001a;
Hadjidemetriou, 2006; Cvitanović et al., 2009,
Chap. 4, 5]). The monodromy matrix is symplectic,1

and its columns correspond to linearly independent
solutions of the equations that govern the evolution
of deviation vectors. In particular, the evolution of

an initial deviation w(0) from a T -periodic orbit is
given by

w(iT ) = [Y(T )]i ·w(0), i = 1, 2, . . . . (11)

Due to the symplectic nature of the monodromy
matrix and the fact that its elements are real, the
eigenvalues of Y(T ) have the following property: if
λ is an eigenvalue then 1/λ and the complex con-
jugate λ∗ are also eigenvalues. This property shows
that the eigenvalues λ = 1 and λ = −1 come in
pairs and that complex eigenvalues with modulus
not equal to 1 always appear in quartets. When all
eigenvalues are on the unit circle, the correspond-
ing periodic orbit is said to be stable. If there exist
eigenvalues off the unit circle, the periodic orbit is
unstable.

A few remarks on the connection of Hamilto-
nian systems with symplectic maps are necessary
at this point. Since autonomous Hamiltonian sys-
tems are conservative, the constancy of the Hamil-
tonian function introduces a constraint which fixes
an eigenvalue of the monodromy matrix to be equal
to 1 and so, by the symplectic property, there must
be a second eigenvalue equal to 1. Thus, for an
Ndof Hamiltonian system there are only 2(N − 1)
a priori unknown eigenvalues, and so we can reduce
our study to a 2(N − 1)-dimensional subspace of
phase space S. This subspace is obtained by the
well-known method of the Poincaré surface of sec-
tion (PSS) (e.g. [Lichtenberg & Lieberman, 1992,
pp. 17–20; Cvitanović et al., 2009, Sec. 3.1, 3.2]).
The corresponding monodromy matrix of the peri-
odic orbit is also symplectic. Thus, in this sense, an
Ndof Hamiltonian system is dynamically equivalent
to 2(N − 1)D symplectic map.

The different stability types of a periodic orbit
in Hamiltonian systems of 2dof and 3dof (or equiv-
alently in 2D and 4D maps) have been studied
in detail in [Broucke, 1969; Hadjidemetriou, 1975;
Dullin & Meiss, 1998; Hadjidemetriou, 2006], while
the stability of periodic orbits in higher dimensional

1Y(T ) satisfies the condition Y(T )T ·J2N ·Y(T ) = J2N , with J2N =
ˆ 0N IN

−IN 0N

˜
, where IN is the N ×N identity matrix and

0N is the N × N zero matrix.

1250218-4



October 3, 2012 19:12 WSPC/S0218-1274 1250218

Probing the Local Dynamics of Periodic Orbits

conservative systems was considered in [Howard &
MacKay, 1987; Howard & Dullin, 1998; Skokos,
2001a]. Following the terminology introduced in
[Skokos, 2001a], the general stability type of a
periodic orbit of an Ndof Hamiltonian system, or
equivalently a 2(N − 1)D map, is denoted by

SpUm∆l, with p + m + 2l = N − 1, (12)

which means that p couples of eigenvalues are on
the unit circle, m couples are on the real axis and l
quartets are on the complex plane but off the unit
circle and the real axis. We conclude that a peri-
odic orbit is stable only when its stability type is
SN−1. In all other cases, the orbit is unstable since
there exist eigenvalues of the monodromy matrix off
the unit circle. For example, in the case of a 3dof
Hamiltonian system or a 4D map, a periodic orbit
can be linearly stable (S2) or have three different
types of instability: S1U1, U2, ∆1 (often called sim-
ple unstable, double unstable and complex unsta-
ble, respectively, see e.g. [Contopoulos & Magnenat,
1985]).

4. The Behavior of the GALI for
Periodic Orbits

4.1. Theoretical treatment

Let λi, i = 1, 2, . . . , 2N be the (possibly complex)
eigenvalues of the monodromy matrix Y(T ) of a T -
periodic orbit, ordered as |λ1| ≥ |λ2| ≥ · · · ≥ |λ2N |.
Then, the corresponding LCEs σi, i = 1, 2, . . . , 2N
are given by [Benettin & Galgani, 1979; Benettin
et al., 1979; Skokos et al., 2007; Skokos, 2010]

σi =
1
T

ln |λi|. (13)

In the case of unstable periodic orbits, where
at least |λ1| > 1, we get σ1 > 0, which implies that
nearby orbits diverge exponentially from the peri-
odic trajectory. Unstable periodic orbits of nonin-
tegrable Hamiltonian systems and symplectic maps
are located inside chaotic domains. All nonperiodic
chaotic orbits in these domains have the same spec-
trum of LCEs, which in general, differs from the
spectrum of LCEs of the unstable periodic orbits of
these domains.

For determining the behavior of GALIk for
unstable periodic orbits, one can apply the analysis
presented in [Skokos et al., 2007] for chaotic orbits
which also have σ1 > 0. This approach leads to the

conclusion that GALIk of unstable periodic orbits
tends to zero exponentially following the law (8)

GALIk(t) ∝ e−[(σ1−σ2)+(σ1−σ3)+···+(σ1−σk)]t. (14)

However, the case of stable periodic orbits
needs a more careful investigation. For this pur-
pose, let us consider an Ndof Hamiltonian system
expressed in action-angle variables Ji, θi, i = 1,
2, . . . , N . The equations of motion of a periodic
orbit of this system are

J̇i = −∂H

∂θi
= 0,

θ̇i =
∂H

∂Ji
= ωi(J1, J2, . . . , JN ),

1 ≤ i ≤ N. (15)

The frequencies ωi satisfy a relation of the form

ω1

k1
=

ω2

k2
= · · · =

ωN

kN
= Ω(J1, J2, . . . , JN ), (16)

where ki, i = 1, 2, . . . , N , are integer numbers and
Ω(J1, J2, . . . , JN ) = 2π/T with T being the period
of the orbit. Equations (15) can be easily integrated
to give

Ji(t) = Ji0,

θi(t) = θi0 + Ω(J10, J20, . . . , JN0)kit,
1 ≤ i ≤ N,

(17)

where Ji0, θi0, i = 1, 2, . . . , N are the initial
conditions.

Let us now denote by ξi, ηi, i = 1, 2, . . . , N ,
small deviations from Ji and θi, respectively. Insert-
ing Eqs. (15) and (16) into the variational equations
of the Hamiltonian system we get

ξ̇i = 0, η̇i = ki

N∑
j=1

Ωjξj, 1 ≤ i ≤ N, (18)

where Ωj = ∂Ω/∂Jj are computed for the initial
constant values Jj0, j = 1, 2, . . . , N . Using as basis
of the 2N -dimensional tangent space of the Hamil-
tonian flow the 2N unit vectors {v̂1, v̂2, . . . , v̂2N},
such that the first N of them correspond to the
N action variables and the remaining ones to the
N conjugate angle variables, any initial devia-
tion vector wi(0) = (ξi

1(0), ξ
i
2(0), . . . , ξ

i
N (0), ηi

1(0),
ηi
2(0), . . . , η

i
N (0)), evolves in time as
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wi(t) =
N∑

j=1

ξi
j(0)v̂j

+
N∑

j=1

[
ηi

j(0) +

(
N∑

l=1

Ωlξ
i
l (0)

)
kjt

]
v̂N+j.

(19)

From the above, it readily follows that for suffi-
ciently long times ‖wi(t)‖ ∝ t.

Let us now consider k, initially linearly inde-
pendent, randomly chosen, unit deviation vectors
{ŵ1, . . . , ŵk}, with 2 ≤ k ≤ 2N , and let W be
the matrix having as rows the coordinates of these
vectors with respect to the {v̂1, v̂2, . . . , v̂2N} basis.
Defining by ξk

i and ηk
i , i = 1, 2, . . . , N , the k × 1

column matrices

ξk
i = [ξ1

i (0) ξ2
i (0) . . . ξk

i (0)]T, ηk
i = [η1

i (0) η2
i (0) . . . ηk

i (0)]T, (20)

W(t) assumes the form

W(t) ∝ 1
tk

·Wk(t) =
1
tk

[
ξk

1 . . . ξk
N

(
ηk

1 +

[
N∑

l=1

Ωlξ
k
l

]
k1t

)
. . .

(
ηk

N +

[
N∑

l=1

Ωlξ
k
l

]
kN t

)]
, (21)

where we have considered
∏k

i=1 ‖wi(t)‖ ∝ tk.
Then, Eq. (9) can be used for the computation
of GALIk.

In order to determine the leading order behav-
ior of GALIk as t grows, we look for the fastest
increasing determinants of all k × k minors of
matrix Wk. For 2 ≤ k ≤ 2N−1, these determinants
include only one column of Wk containing the term
[
∑N

l=1 Ωlξ
k
l ] and grow proportional to t, since deter-

minants with more than one column proportional
to [

∑N
l=1 Ωlξ

k
l ] are identically zero. Thus, we con-

clude that GALIk(t) ∝ t−(k−1) for 2 ≤ k ≤ 2N − 1.
For k = 2N , Wk is a square 2N ×2N matrix which
has a constant determinant, since time appears only
through multiplications with the N first columns of
Wk, and so GALIk(t) ∝ t−2N . Summarizing, the
time evolution of GALIk for stable periodic orbits
of Ndof Hamiltonian systems is given by

GALIk ∝




1
tk−1

if 2 ≤ k ≤ 2N − 1

1
t2N

if k = 2N.

(22)

It is worth mentioning that Eq. (22) can be
retrieved from Eq. (6) by assuming motion on a one-
dimensional (s = 1) torus, i.e. on a one-dimensional
curve, which is the stable periodic orbit. Note that
for s = 1, only the last two branches of Eq. (6) are
meaningful.

Stable periodic orbits of symplectic maps cor-
respond to stable fixed points of the map, which
are located inside islands of stability. Any devia-
tion vector from the stable periodic orbit performs

a rotation around the fixed point. This, for exam-
ple, can be easily seen in the case of 2D maps where
the islands in the vicinity of a stable fixed point
can be represented through linearization, by ellipses
(see for instance [Lichtenberg & Lieberman, 1992,
Sec. 3.3.b; Lega & Froeschlé, 2001]). Thus, any
set of 2 ≤ k ≤ 2N initially linearly independent,
unit deviation vectors will rotate around the fixed
point, keeping, on the average, the angles between
them constant. This means that the volume of the
k-parallelogram having as edges these vectors will
remain practically constant, exhibiting some fluctu-
ations, since the rotation angles are constant only
on average. So, in the case of stable periodic orbits
of 2ND maps we have

GALIk ∝ const, 2 ≤ k ≤ 2N. (23)

4.2. Numerical results —
Hamiltonian flows

To verify the validity of the theoretical predictions
of Eqs. (14) and (22) we now compute the GALIs
for some representative Hamiltonian systems of dif-
ferent number of degrees of freedom.

4.2.1. 2dof Hénon–Heiles system

First we consider the well-known 2dof Hénon–Heiles
model [Hénon & Heiles, 1964]

H2 =
1
2
(p2

x + p2
y) +

1
2
(x2 + y2)

+ x2y − 1
3
y3. (24)

1250218-6



October 3, 2012 19:12 WSPC/S0218-1274 1250218

Probing the Local Dynamics of Periodic Orbits

In our study we keep the value of the Hamilto-
nian fixed at H2 = 0.125. Figure 1(a) shows the
PSS of the system defined by x = 0, px ≥ 0.
We consider two stable periodic orbits (whose
stability type is S1 according to Eq. (12)): An
orbit of period 5 (i.e. an orbit intersecting the
PSS at the five points denoted by blue crosses in
Fig. 1(a)) with initial condition (x, y, px, py) ≈ (0,
0.35207, 0.36427, 0.14979), and an orbit of period
7 (red squares in Fig. 1(a)) with initial condition
(x, y, px, py) ≈ (0, 0.45882, 0.32229, 0). The time
evolution of GALIk, k = 2, 3, 4 for these two orbits,
for a random choice of initial orthonormal deviation
vectors, is shown in Figs. 1(b) and 1(c), respectively.
For both orbits the indices show a power law decay
to zero, in accordance with the theoretical predic-
tion of Eq. (22) for N = 2.

In order to check the validity of Eq. (14), we
consider an unstable periodic orbit (of U1 type)
of period 5 (green circles in Fig. 1(a)) with ini-
tial condition (x, y, px, py) ≈ (0, 0.2083772012,
0.4453146996, 0.1196065752). The theoretically
expected value of this orbit’s mLCE σ1 is esti-
mated from Eq. (13) to be σ1 ≈ 0.084, while σ2 = 0

because the Hamiltonian function is an integral of
motion.

In Fig. 1(d), the time evolution of the corre-
sponding GALIk, k = 2, 3, 4 is plotted. From these
results we conclude that the computed values of
GALIs are well approximated by Eq. (14) for σ1 =
0.084 and σ2 = 0, at least up to t ≈ 350. After that
time, we observe a change in the exponential decay
of GALI2. This happens because the numerically
computed orbit deviates from the unstable periodic
orbit, due to computational inaccuracies, and enters
the surrounding chaotic domain, which is character-
ized by different LCEs. This behavior is also evident
from the evolution of the finite time mLCE L1(t)
[Fig. 1(e)] having as limit for t → ∞ the mLCE
σ1 of the computed orbit (for more details on the
computation of the mLCE, the reader is referred to
[Skokos, 2010, Sec. 5]). For an initial time interval,
L1(t) well approximates the mLCE of the unstable
periodic orbit, but later on, due to the divergence
of the computed orbit from the periodic trajectory,
L1(t) tends to a different value, which is the mLCE
of the chaotic domain around the unstable periodic
orbit.

(a) (b)

Fig. 1. (a) The PSS of the 2dof Hénon–Heiles system (24) with H2 = 0.125. The intersection points of stable periodic orbits
of periods 5 (blue crosses) and 7 (red squares), as well as an unstable orbit of period 5 (green circles) are also plotted. The
line py = 0, denoting a set of initial conditions discussed in Sec. 5, is also plotted. The time evolution of GALI2 (red curves),
GALI3 (green curves) and GALI4 (blue curves) for these three orbits is shown in panels (b)–(d) respectively. Both axes of
(b) and (c), and the vertical axis of (d) are logarithmic. (e) The time evolution of the quantity L1(t), which has as limit for
t → ∞ the mLCE σ1 of the unstable periodic orbit (horizontal dotted line). Plotted lines correspond to functions proportional
to t−1, t−2 and t−4 in (b) and (c), and the exponential laws (14) for σ1 = 0.084, σ2 = 0 in (d).
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(c) (d)

(e)

Fig. 1. (Continued)

4.2.2. A 3dof Hamiltonian system

Let us now investigate the behavior of the GALIs for
a 3dof Hamiltonian system, where different types
of unstable periodic orbits can appear. In particu-
lar, we consider a system of three harmonic oscil-
lators with nonlinear coupling, described by the
Hamiltonian

H3 =
1
2
(p2

x + p2
y + p2

z) +
1
2
(Ax2 + By2 + Cy2)

− εxz2 − ηyz2. (25)

The harmonic frequencies of the oscillators are
determined by parameters A, B, C, and the
strengths of the nonlinear couplings by ε and η. This
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system was introduced as a crude description of
the inner parts of distorted three-dimensional ellip-
tic galaxies. Detailed studies of its basic families
of periodic orbits were performed in [Contopou-
los & Barbanis, 1985; Contopoulos & Magnenat,
1985; Contopoulos, 1986a, 1986b]. Following these
works, we fix A = 0.9, B = 0.4, C = 0.225 and
H3 = 0.00765 and vary ε and η in order to study
periodic orbits of different stability types.

In Fig. 2(a) we plot the time evolution of
GALIs for a stable (S2) periodic orbit with initial
condition (x, y, z, px, py, pz) ≈ (−0.06686, 0.01230,
0, 0, 0, 0.10590) for ε = 0.2 and η = 0.1. The 3dof
system has a six-dimensional phase space and so,
five different GALIk, with 2 ≤ k ≤ 6, are defined.
All GALIs decay to zero following the power law
predictions given by Eq. (22) for N = 3.

Let us now study representative cases of all
the different types of unstable periodic orbits that
can appear in a general 3dof system. In particu-
lar, we consider an S1U1 periodic orbit with ini-
tial condition (x, y, z, px, py, pz) ≈ (−0.0238841214,
0.0744533850, 0, 0, 0, 0.1121127613) for ε = 0.848,
η = 0.1 [Fig. 2(b)], an U2 periodic orbit with ini-
tial condition (x, y, z, px, py, pz) ≈ (−0.0392937629,

0.0648373644, 0, −0.0564496390, 0.0021636015,
0.0950663122) for ε = 0.35, η = 0.51 [Fig. 2(c)],
and a ∆1 periodic orbit with initial condition
(x, y, z, px, py, pz) ≈ (−0.0456720106, 0.0658047594,
0, 0, 0, 0.1081228661) for ε = 0.6 and η = 0.3
[Figs. 2(d) and 2(e)].

Using Eq. (13) we estimated the LCEs to be
σ1 ≈ 0.046, σ2 = 0 and σ1 ≈ 0.014, σ2 ≈ 0.0019
for the S1U1 and the U2 unstable periodic orbits,
respectively. Using these values as good approxi-
mations of the actual LCEs, we see in Figs. 2(b)
and 2(c) that the evolution of GALIs is well repro-
duced by Eq. (14).

An eigenvalue of the monodromy matrix of the
∆1 unstable periodic orbit is numerically found to
be λ1 ≈ 1.410 + 0.164i, while the remaining three
of them (apart from the two unit ones) are 1/λ1,
λ∗

1 and 1/λ∗
1. Then, from Eq. (13), we estimated

the three largest LCEs of the periodic orbit to be
σ1 = σ2 ≈ 0.023, σ3 = 0. The evolution of the
GALIs for this orbit is shown in Fig. 2(d). Although
the periodic orbit is unstable, GALI2 does not decay
to zero but remains constant until t ≈ 103. This
happens because, according to Eq. (14) GALI2 ∝
e−(σ1−σ2)t, but in this case σ1 = σ2. However,

(a) (b)

Fig. 2. The time evolution of GALIk, 2 ≤ k ≤ 6 for (a) an S2 stable, (b) an S1U1 unstable, (c) a U2 unstable and (d) a ∆1

unstable periodic orbit of the 3dof Hamiltonian system (25). Both axes of (a) and (d), and the vertical axis of (b) and (c) are
logarithmic. Plotted lines correspond to appropriate power laws (22) in (a), and exponential laws (14) in (b) and (c). (e) The
time evolution of quantities L1(t), L2(t) having respectively, as limit the two largest LCEs σ1, σ2 of the ∆1 unstable periodic
orbit. The theoretically estimated value σ1 = σ2 = 0.023 is denoted by a horizontal line.
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(c) (d)

(e)

Fig. 2. (Continued)

due to unavoidable inaccuracies in the numerical
integration, the computed orbit eventually diverges
from the unstable periodic one and enters a chaotic
domain characterized by different LCEs with σ1 �=
σ2. This divergence is also evident from the evolu-
tion of quantities L1(t), L2(t) in Fig. 2(e), whose
limits at t → ∞ are σ1 and σ2 respectively (see
[Skokos, 2010] for more details on the computation

of σ1 and σ2). In particular, we get L1(t) ≈ L2(t)
for t � 103, while later on the two quantities attain
different values. Consequently, for t � 103 GALI2
starts to decay exponentially to zero. On the other
hand, all other GALIs in Fig. 2(d) show an expo-
nential decay, even when GALI2 remains constant,
since the corresponding exponents in Eq. (14) do
not vanish.
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4.2.3. A multidimensional Hamiltonian
system

Finally, we turn to a multidimensional Hamiltonian
system representing a one-dimensional chain of five
identical particles with nearest neighbor interac-
tions given by the FPU-β Hamiltonian [Fermi et al.,
1955]

H5 =
1
2

5∑
j=1

p2
j

+
5∑

j=0

(
1
2
(xj+1 − xj)2 +

1
4
β(xj+1 − xj)4

)
,

(26)

(a) (b)

(c)

Fig. 3. The time evolution of (a) GALI2, GALI3, GALI5 and (b) GALI6, GALI8, GALI10 for a stable periodic orbit of the
5dof Hamiltonian system (26). (c) The time evolution of GALI2, GALI3, GALI5 for an S4U1 unstable periodic orbit of the
same model. Plotted lines correspond to appropriate power laws (22) in (a) and (b), and exponential laws (14) in (c).
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where xj is the displacement of the jth particle from
its equilibrium position and pj is the corresponding
conjugate momentum. In our study, we set β = 1.04
and impose fixed boundary conditions to the sys-
tem, so that we always have x0 = x6 = 0.

Let us consider two particular members of a
family of periodic orbits studied in [Ooyama et al.,
1969; Antonopoulos et al., 2006] which have initial
conditions of the form x1(0) = −x3(0) = x5(0) =
x̂(0), x2(0) = x4(0) = 0, pj(0) = 0, 1 ≤ j ≤ 5.
We compute the GALIs of an S5 stable periodic
orbit [Figs. 3(a) and 3(b)] with initial condition
x̂(0) ≈ 1.035 for H5 = 5 and an S4U1 unsta-
ble periodic orbit [Fig. 3(c)] with initial condition
x̂(0) ≈ 1.168 for H5 = 7. From Fig. 3 we see again
that the behavior of the GALIs is well reproduced
by Eq. (22) for N = 5 in the case of the stable orbit,
and by Eq. (14) for σ1 = 0.088, σi = 0, 2 ≤ i ≤ 5,
which are the values obtained by Eq. (13) for the
unstable orbit.

4.3. Numerical results — Symplectic
maps

According to the theoretical arguments of Sec. 4.1,
the GALIs of unstable periodic orbits of maps
should exhibit the same behavior as in the case

of Hamiltonian flows, i.e. they should tend expo-
nentially to zero following Eq. (14). On the other
hand, we have argued that the GALIs of stable
periodic orbits should remain constant, according
to Eq. (23), having a different behavior with respect
to Hamiltonian systems. To verify these predictions,
we now proceed to study some periodic orbits in a
2D and a 4D symplectic map.

4.3.1. 2D Hénon map

First we consider the 2D Hénon map [Hénon, 1969]

x′ = x cos(2πω) + (y + x2) sin(2πω)

y′ = −x sin(2πω) + (y + x2) cos(2πω),
(27)

where ω is a real positive constant. The phase
space of this map for ω = 0.201 is plotted in
Fig. 4(a). We consider two periodic orbits of period
5 (i.e. after five iterations of the map the orbit
returns to its initial point): an S1 stable orbit (blue
stars in Fig. 4(a)) with initial condition (x, y) ≈
(0.14175,−0.10366), and an U1 unstable one (red
crosses in Fig. 4(a)) with initial condition (x, y) ≈
(0.0622148475, 0.1477550294). Figure 4(b) shows
that the GALI2 of the stable periodic orbit oscillates
around a constant positive value, in accordance to
Eq. (23). We have also verified that the GALI2 of

(a) (b)

Fig. 4. (a) The phase space of the 2D Hénon map (27) for ω = 0.201. The points of two periodic orbits of period 5, a stable
(blue stars) and an unstable one (red crosses), are also plotted. The time evolution of GALI2 of the stable orbit is plotted in
(b). Two particular points of the unstable periodic orbit discussed in Sec. 5 are marked by letters A and B.

1250218-12



October 3, 2012 19:12 WSPC/S0218-1274 1250218

Probing the Local Dynamics of Periodic Orbits

the unstable periodic orbit decays exponentially to
zero following Eq. (14) with σ1 = 0.0039.

4.3.2. 4D standard map

Let us now consider the 4D symplectic map
[Kantz & Grassberger, 1988]

x′
1 = x1 + x′

2

x′
2 = x2 +

K1

2π
sin(2πx1)

− β

2π
sin[2π(x3 − x1)]

x′
3 = x3 + x′

4

x′
4 = x4 +

K2

2π
sin(2πx3)

− β

2π
sin[2π(x1 − x3)]

(mod 1), (28)

which consists of two coupled standard maps, with
real parameters K1, K2 and β.

In Fig. 5 we plot the evolution of GALIs for an
S2 stable periodic orbit of period 7 with initial con-
dition (x1, x2, x3, x4) ≈ (0.23666, 0, 0.23666, 0) for
K1 = K2 = 0.9 and β = 0.05. Like in the case
of the 2D map (27), GALI2, GALI3 and GALI4

Fig. 5. The time evolution of GALI2 (red curve), GALI3
(green curve) and GALI4 (blue curve) for a stable periodic
orbit of period 7 of the 4D map (28).

remain constant, oscillating around nonzero values,
in accordance with Eq. (23).

5. Dynamics in the Neighborhood
of Periodic Orbits

We now turn our attention to the dynamics in the
vicinity of periodic orbits, studying initially the
neighborhood of stable periodic orbits in Hamil-
tonian systems. As a first example, we consider
the 2dof Hénon–Heiles system (24), and in particu-
lar, the stable periodic orbit of period 5 studied in
Sec. 4.2.1. In Fig. 1(b), we have seen that GALI2 ∝
t−1, GALI3 ∝ t−2 and GALI4 ∝ t−4 in accordance
with Eq. (22). We expect that small perturbations
of this trajectory will lead to regular motion on
two-dimensional tori surrounding the periodic orbit.
For this kind of motion, Eq. (7) predicts GALI2 ∝
const, GALI3 ∝ t−2 and GALI4 ∝ t−4. Thus, only
for GALI2 a different evolution between the peri-
odic orbit and its neighborhood is expected. This
is actually true, as we see in Fig. 6(a) where the
time evolution of GALIk, k = 2, 3, 4 is plotted
for the stable periodic orbit (red curves) and two
nearby orbits whose initial conditions result from
∆y = 0.00793 (green curves) and ∆y = 0.02793
(blue curves) perturbations. The GALI2 of neigh-
boring orbits initially follows a GALI2 ∝ t−1 evo-
lution, similar to the periodic orbit, but later on
stabilizes to a nonzero value as Eq. (7) predicts.
From Fig. 6(a), we see that the closer the orbit is to
the periodic trajectory the longer the initial phase
of GALI2 ∝ t−1 lasts, and the smaller is the final
nonzero value to which the index tends.

Let us now perform a more global study of the
dynamics of the Hénon–Heiles system. First, we
consider orbits whose initial conditions lie on the
py = 0 line of the PSS of Fig. 1(a). In particular,
we use 7000 equally spaced initial conditions on
this line and compute their GALI2 values, using
for each of them the same set of initial (random
and orthonormal) deviation vectors. In Fig. 6(b),
we plot the GALI2 values at t = 105 as a func-
tion of y. The regions where GALI2 has large
values (�10−1) correspond to regular motion on
two-dimensional tori. Regions where GALI2 has
very small values (�10−12) correspond to chaotic or
unstable periodic orbits, while domains with inter-
mediate values (10−4 � GALI2 � 10−12), corre-
spond to sticky, chaotic orbits. We also distinguish
narrow regions where GALI2 decreases abruptly to
values 10−1 � GALI2 � 10−4. These correspond to
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(a) (b)

(c)

Fig. 6. (a) The time evolution of GALI2, GALI3 and GALI4 for three orbits of the Hénon–Heiles system (24): The sta-
ble periodic orbit of period 5 studied in Sec. 4.2.1 (red curves) and two nearby orbits whose initial conditions result from
∆y = 0.00793 (green curves) and ∆y = 0.02793 (blue curves) perturbations of the periodic orbit. Note that curves of GALI3
and GALI4 overlap each other. (b) The GALI2 values at t = 105 for orbits with initial conditions on the py = 0 line of the PSS
of Fig. 1(a), as a function of the y coordinate of the initial condition. (c) Regions of different GALI2 values on the (H2, py)
plane of the Hénon–Heiles system (24). Each point corresponds to an orbit in the neighborhood of a family of periodic orbits
(white curve) and is colored according to the log(GALI2) value computed at t = 104. The black filled circle denotes the stable
periodic orbit of Fig. 1(b).

domains of regular motion around the main stable
periodic orbits of the system, as e.g. in the vicinity
of y ≈ 0.3 which corresponds to the stable peri-
odic orbit in the center of the main island of stabil-
ity in the PSS of Fig. 1(a). This behavior appears

because GALI2 at stable periodic orbits decays fol-
lowing a t−1 power law and reaches values smaller
than the ones obtained for the neighboring regu-
lar orbits, where GALI2 tends to constant nonzero
values, as we have seen in Fig. 6(a).
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This information can be directly used to iden-
tify the location of stable periodic orbits. In
Fig. 6(c) we show a color plot of the parametric
space (H2, py) of the Hénon–Heiles system (24).
Each point corresponds to an initial condition and
is colored according to its log(GALI2) value com-
puted at t = 104. Chaotic orbits are characterized
by very small GALI2 values and are located in the

purple colored domains. The deep orange colored
“strip” corresponds to the vicinity of a family of sta-
ble periodic orbits (this family is denoted by a white
curve) for which GALI2 attains smaller (but not too
small) values with respect to the surrounding light
orange colored region, where regular motion on two-
dimensional tori takes place. We note that, as H2

increases, the periodic orbit changes its stability

(a) (b)

(c)

Fig. 7. (a) The time evolution of GALI2 of a chaotic orbit of the 2D map (27), with initial condition close to the unstable
periodic orbit discussed in Sec. 4.3.1. The blue curve shows the y coordinate of the orbit in arbitrary units. Consequents of
this orbit and its two unit deviation vectors in the neighborhood of points A and B of the unstable periodic orbit of Fig. 4(a),
are respectively plotted in (b) and (c). In (b) and (c) the stable and unstable manifolds of points A and B are respectively
plotted, while the points of the chaotic orbit are labeled according to their iteration number.
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and becomes unstable for H2 � 0.146. The point
H2 = 0.125, py = 0.14979, denoted by a black filled
circle in Fig. 6(c), corresponds to the stable periodic
orbit of Fig. 1(b).

The GALIs of chaotic orbits in the vicin-
ity of unstable periodic orbits can exhibit a
remarkable oscillatory behavior. Such an exam-
ple is shown in Fig. 7 for a chaotic orbit of
the 2D map (27) with initial condition (x, y) =
(0.06221484498946357, 0.14775502681732178)
(point denoted by “0” in Fig. 7(b)), which is located
very close to the unstable periodic orbit of period
5 discussed in Sec. 4.3.1 (point A in Figs. 4(a)
and 7(b)). In Fig. 7(a) we see that the GALI2 of
this orbit decreases exponentially, reaching very
small values (GALI2 ≈ 10−12), since the two ini-
tially orthonormal deviation vectors tend to align
[Fig. 7(b)] due to the chaotic nature of the orbit.

The evolution of these vectors is strongly influ-
enced by the stable and unstable manifolds of the
nearby unstable periodic orbit. In particular, as the
chaotic orbit moves away from point A along a
direction parallel to the unstable manifold (green
curve in Fig. 7(b)), both deviation vectors are
stretched in this direction, and shrunk in the direc-
tion of the stable manifold (blue curve in Fig. 7(b)).
So, after a few hundreds of iterations, while the
orbit remains in the proximity of point A (note the
tiny intervals in both axes of Fig. 7(b)), the evolved

unit deviation vectors become almost identical, and
consequently GALI2 decreases significantly.

Nevertheless, the angle between the two vectors
does not vanish, and starts to grow again when the
orbit approaches point B of Fig. 7(c), which is the
next consequence of the unstable periodic orbit (see
also Fig. 4(a)). The chaotic orbit approaches point
B moving parallel to the stable manifold of point
B (blue curve in Fig. 7(c)). Now the deviation vec-
tors start to shrink along this manifold, while they
expand along the direction of the unstable manifold
of point B (green curve in Fig. 7(c)). This leads to
a significant increase of the angle between the two
unit vectors, as we see in Fig. 7(c), and consequently
to an increase of the GALI2 values [Fig. 7(a)].

This oscillatory behavior is repeated as the
chaotic orbit visits all consequents of the unsta-
ble periodic orbit, and is clearly seen in Fig. 7(a)
where the y coordinate of the chaotic orbit is plot-
ted in arbitrary units (blue curve) together with
the GALI2 values. The horizontal segments of this
curve correspond to the time intervals that the orbit
spends close to the fixed points of the unstable
periodic orbit. During the first part of these inter-
vals the chaotic orbit approaches a fixed point, the
two deviation vectors become different and GALI2
increases, while afterwards, the chaotic orbit moves
away from the fixed point, whence the two devi-
ation vectors tend to align, and GALI2 decreases.

(a) (b)

Fig. 8. Plots similar to Fig. 7(a) for orbits of (a) the 2dof Hénon–Heiles system (24), and (b) the 3dof Hamiltonian system
(25). Blue curves show in arbitrary units the y coordinate of the studied orbits on (a) the PSS x = 0, px ≥ 0 of system (24),
and (b) the PSS z = 0, pz ≥ 0 of system (25).
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GALI2 reaches its lowest values during the short
transition intervals between the neighborhoods of
two successive points of the unstable periodic orbit,
which correspond to the short connecting segments
between the plateaus of the blue curve in Fig. 7(a).
These oscillations of GALI2 can last for quite long
time intervals, but eventually the chaotic orbit will
escape from the strong influence of the homoclinic
tangle of the unstable periodic orbit and GALI2 will
rapidly tend to zero. It is worth mentioning that
abrupt changes in the values of SALI (which prac-
tically is GALI2) by many orders of magnitude were
also reported in [Voyatzis, 2008] for chaotic orbits
of planetary systems.

Up to now, we have described in detail these
oscillations of GALI2 in the case of the 2D map (27)
because they can be easily explained, while the
deviation vectors themselves can be visualized in
the two-dimensional phase space of the map. Inter-
estingly, this remarkable behavior occurs in higher
dimensional systems as well. In Fig. 8 we show
two such examples. In particular, we consider a
chaotic orbit of the 2dof Hamiltonian system (24),
whose initial condition is located close to an unsta-
ble periodic orbit of period 7 with initial condition
(x, y, px, py) ≈ (0, 0.1282112414, 0.4847338571, 0)
[Fig. 8(a)], and an orbit of the 3dof system (25)
whose initial condition is near the S1U1 periodic

orbit presented in Sec. 4.2.2 [Fig. 8(b)]. In both pan-
els of Fig. 8 we observe an oscillatory behavior of
GALI2, similar to the one shown in Fig. 7(a). We
also point out that in both cases all other GALIs
show similar oscillatory behaviors.

6. Connection Between the
Dynamics of Flows and Maps

In Sec. 3 we discussed the dynamical equivalence
between Ndof Hamiltonian systems and 2(N − 1)D
maps, as the latter can be interpreted as appro-
priate PSSs of the former. We have also seen that
GALIs behave differently for flows and maps. In
particular, as was shown in Sec. 4, they remain con-
stant for stable periodic orbits of maps [see Eq. (23)]
and decrease to zero for flows, according to Eq. (22).

The fact that maps can be considered as PSS of
flows, however, is the key to understanding this dif-
ference. So, computing the restriction of the GALIs
on the PSS of a Hamiltonian system, or more gen-
erally on spaces perpendicular to the flow, should
lead to behaviors of the indices similar to the
ones obtained for maps. Actually this approach has
already been successfully applied to other chaos
indicators related to the evolution of deviation vec-
tors [Fouchard et al., 2002; Barrio, 2005], by only

(a) (b)

Fig. 9. The time evolution of (a) GALIk, k = 2, 3 for the stable periodic orbit of the 2dof system (24) presented in Fig. 1(b),
and (b) GALIk, k = 2, 3, 4, 5 for the stable periodic orbit of the 3dof system (25) presented in Fig. 2(a), when the orthogonal
to the flow components of the deviation vectors are used.
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considering the components of these vectors which
are orthogonal to the flow.

Using deviation vectors orthogonal to the flow,
we indeed obtain the same GALI behavior for sta-
ble periodic orbits of flows and maps. Now, for
stable periodic orbits of flows the GALIs of these
vectors remain constant, as we see from Figs. 9(a)
and 9(b) where these GALIs are plotted for the sta-
ble periodic orbits of Figs. 1(b) and 2(a), respec-
tively. These behaviors differ, however, from the
ones shown in Figs. 1(b) and 2(a) where the GALIs
of the usual deviation vectors were computed. We
note that when vectors orthogonal to the flow are
used, GALI2N of an Ndof Hamiltonian system is
by definition equal to zero, because the 2N pro-
jected vectors are linearly dependent on a (2N −1)-
dimensional space. For this reason, GALI4 and
GALI6 are not displayed in Figs. 9(a) and 9(b)
respectively.

7. Summary

In this paper, we have explored in more detail
the properties of the GALI method by using it to
study the local dynamics of periodic solutions of
conservative dynamical systems. To this end, we
have: (a) theoretically predicted and numerically
verified the behavior of the method for periodic
orbits, (b) summarized the expected behaviors of
the indices and (c) clarified the connection between
the behavior of GALIs for dynamical systems of
continuous (Hamiltonian flows) and discrete (sym-
plectic maps) time.

More specifically, we showed that for stable
periodic orbits, GALIs tend to zero following par-
ticular power laws for Hamiltonian flows [Eq. (22)],
while they fluctuate around nonzero values for sym-
plectic maps [Eq. (23)]. In addition, the GALIs of
unstable periodic orbits tend exponentially to zero,
both for flows and maps [Eq. (8)].

Finally, we examined the usefulness of the
indices in helping us better understand the dynam-
ics in the vicinity of periodic solutions of such sys-
tems. We explained how, the fact that GALIs attain
larger values near stable periodic orbits than on
the periodic orbits themselves, can be used to iden-
tify the location of these orbits. We also observed a
remarkable oscillatory behavior of the GALIs asso-
ciated with the dynamics close to unstable periodic
orbits and explained it in terms of the stable and
unstable manifolds of the periodic orbit, showing

how the influence of these manifolds can lead to
large variations of the GALI values by many orders
of magnitude.
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Benettin, G., Froeschlé, C. & Scheidecker, J. P. [1979]
“Kolmogorov entropy of a dynamical system with
an increasing number of degrees of freedom,” Phys.
Rev. A 19, 2454–2460.

Bountis, T. & Skokos, Ch. [2006] “Application of the
SALI chaos detection method to accelerator map-
pings,” Nucl. Instr. Meth. Phys. Res. — Sect. A 561,
173–179.

Bountis, T., Manos, T. & Christodoulidi, H. [2009]
“Application of the GALI method to localization
dynamics in nonlinear systems,” J. Comp. Appl.
Math. 227, 17–26.

Broucke, R. A. [1969] “Periodic orbits in restricted three
body problem,” NASA Tech. Rep. 32-1360.

1250218-18



October 3, 2012 19:12 WSPC/S0218-1274 1250218

Probing the Local Dynamics of Periodic Orbits

Capuzzo-Dolcetta, R., Leccese, L., Merritt, D. & Vicari,
A. [2007] “Self-consistent models of cuspy triaxial
galaxies with dark matter halos,” Astrophys. J. 666,
165–180.

Christodoulidi, H. & Bountis, T. [2006] “Low-
dimensional quasiperiodic motion in Hamiltonian sys-
tems,” ROMAI J. 2, 37–44.

Contopoulos, G. & Barbanis, B. [1985] “Resonant sys-
tems with three degrees of freedom,” Astron. Astro-
phys. 153, 44–54.

Contopoulos, G. & Magnenat, P. [1985] “Simple three-
dimensional periodic orbits in a galactic-type poten-
tial,” Celest. Mech. 37, 387–414.

Contopoulos, G. [1986a] “Qualitative changes in 3-
dimensional dynamical systems,” Astron. Astrophys.
161, 244–256.

Contopoulos, G. [1986b] “Bifurcations in systems of
three degrees of freedom,” Celest. Mech. 38, 1–22.
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